Preliminary comparisons of AIRS V6.6.5 with ozonesondes and PREPQC sondes and Updates on single-footprint retrievals from AIRS

Bill Irion
Jet Propulsion Laboratory
California Institute of Technology

With thanks to my colleagues, in particular Evan Manning

Preliminary V6.5.5 ozone vs V6

- Gather AIRS V6.5.5 matchups within 3 hrs and 100 km of sonde launch
 - 791 sondes (so far)
- For both V6 (w/MW) and V6.5.5, calculate profile biases against L2 support retrievals using "raw" and "kerned" sonde data
 - $\mathbf{x}_{\text{kerned}} = \mathbf{x}_0 + \mathbf{A}(\mathbf{x}_{\text{true}} \mathbf{x}_0)$
 - what AIRS "should have seen"
 - 9 trapezoids in V6, 20 trapezoids in V6.5.5
 - V6 **x**₀ from climatology, V6.5.5 **x**₀ in L2 support
- Calculate median bias for each sonde ([AIRS sonde] / sonde)
 - 5 AIRS observations minimum
- Calculate median bias for each site
 - 10 sonde launches minimum with at least 5 AIRS observations
 - 17 sites had enough data for these last two criteria

Number of sondes

Preliminary V6.5.5 temperature trend vs V6

- Select better quality sondes from PREPQC files
 - Per Kevin Yau's recipe on PREPQC quality flags
- Find AIRS matchup profiles
 - For now, only for January 2004 2016
 - 3 hr, 100 km maximum miss time/distance from sonde launch
- Interpolate radiosonde temperature to AIRS gridding
- Use AIRS first guess and averaging kernel on radiosonde to create "kerned" radiosonde profile:

$$X_T^* = X_0 + A(X_T - X_0)$$

60N - 90N

Black lines – V655 Red lines – V6

Temperature qual flags = 0,1 Land only

±3 hr maximum miss time from sonde launch

100 km maximum miss distance

30N - 60N

Black lines – V655 Red lines – V6

Temperature qual flags = 0,1 Land only

±3 hr maximum miss time from sonde launch

100 km maximum miss distance

15N - 30N

Black lines – V655 Red lines – V6

Temperature qual flags = 0,1 Land only

±3 hr maximum miss time from sonde launch

100 km maximum miss distance

90S - 60S

Black lines – V655 Red lines – V6

Temperature qual flags = 0,1 Land only

±3 hr maximum miss time from sonde launch

100 km maximum miss distance

Speeding-up the single-footprint retrieval

Modify F90 version of SARTA to save predictors if they don't need re-calculation (useful for Jacobian calculations)

Use pre-processor to average MODIS cloud data over AIRS spatial response, and ECMWF *a priori*

- Working with Mathias on methods to speed-up MODIS pre-processing

Simple spatial interpolation of U. Wisconsin emissivity rather than weighted average over AIRS spatial response

Use method of DiNatale et al. (2017) (following Broyden, 1965) to estimate Jacobians when χ^2 is decreasing:

$$\mathbf{K}_{i+1} = \mathbf{K}_i + \frac{\left[(\mathbf{F}(x_{i+1}) - \mathbf{F}(x_i) - \mathbf{K}_i \Delta x_i) \Delta x_i \right]}{\left(\Delta x_i^T \cdot \Delta x_i \right)}; \Delta x_i = x_{i+1} - x_i$$

Nighttime *a priori* cloud optical depth varies with MODIS cloudiness flag

Lowers time required for single retrieval from ~15 s to ~5.5 s

(or from \sim 50 hrs per 135x90 granule to \sim 18.5 hrs on a single processor).

Questions?